
CHAPTER 12

DSP Audio Mic-Processor

While most modern transceivers have extensive digital signal processing
(DSP) functions for microphone audio signal conditioning, older rigs do not.
Also, many inexpensive transceivers have no DSP capability. Regardless of
their shortcomings, many amateurs still like to use their older (vintage) or
less expensive units on a regular basis.

Just like the Chapter 11 DSP Post Processor (DPP), we have created a
DSP-based audio microphone signal conditioner based on the Teensy line of
microcontrollers. As with the Post Processor, we elected to use the newer
Teensy 4.0 unit, primarily for its Audio Library DSP capabilities. The Teensy
4 (to be known as the “T4” from now on) is a real powerhouse, clocked at
600 MHz, with 1024 KB of RAM and 2048 KB of flash memory. (As we go
to press, PJRC has announced the Teensy 4.1, which is the same as the T4,
but with a higher pin count and larger footprint, and about $5 more
expensive.) The T4 initially is being offered in a reduced-size development
board package but it has sufficient GPIO pins for our application. Note that
the Chapter 11 Post Processor required additional GPIO pins from the
underside of the T4 board, while the Mic-Processor does not.

So, what can an audio mic-processor do for you? Some of the possibilities
are:

• Automatic speech compressor
• Multi-band equalizer
• FFT display
• Interface both dynamic and capacitor/electret mics to an older

transceiver.
There are several commercial units with some of the functions mentioned

above, but typically at relatively high prices, some starting at several hundred
dollars. The unit we are describing does all of the specs listed for commercial
units and costs less than $70, if you build it yourself. In addition, the
software, which is the heart of the unit, is open-source, so you can extend and



tailor the processor to your needs. We also present some ideas of ways to
augment the features of our DSP Mic-Processor (DMP), if you choose to do
so.

User Interface (UI) Overview
The stuff under the hood of our DMP is quite interesting, but everyday

interaction with the user interface is what makes the high-powered DSP
technology accessible. We have spent a significant amount of time and
countless prototypes streamlining the way our DSP unit interfaces with you
and the functionality it brings to the table.

A UI has several aspects, most important of which are: 1) the control/data
input mechanism, 2) feedback to the user, and 3) the ease with which the user
can make changes. We have elected to present data about the state of the
processor using a high-resolution TFT color LCD screen. Data input/control
uses the touch capability of the TFT screen as well as rotary encoders and an
analog-to-digital volume pot. Our experience has shown that this
combination of physical controls and TFT touch-screen input is quite
efficient and minimizes the number of steps necessary to make changes and
set the state of the unit.

Figure 12.1 shows one of the front panel menu options we elected to use,
combining a TFT display, volume control, two rotary encoders, and three
input/output jacks — there are more jacks on the back panel. With the TFT
display, the user gets graphical feedback as to the state of the unit’s functions
and can select functions and set parameters. A real-time FFT display shows
the spectral content of the various signals, after DSP. Because of the less
stringent graphics requirements, this project uses a slightly lower resolution
touch screen (320×240 pixels) than was used in the DPP.



Figure 12.2 shows a close-up of the TFT screen with the graphical display
graphic equalizer function shown. Here the user can select bands and band
levels, while monitoring the effect using the headphones. Real-time
interaction makes fine tuning the unit a breeze. The UI is explained in detail
later in this chapter.



Circuit Description
This project is about 25% electronic hardware and 75% software, so let’s

get the circuit out of the way first and then dive into the software.
Figure 12.3 shows a block diagram of the circuit. The heart of the unit is

the Teensy T4 microcontroller. The second most important component is the
Teensy Audio Adapter (TAA), which contains all of the audio I/O, such as
ADCs and DACs necessary to capture the audio signals. It also sends the
digital data to the T4 and converts and outputs the processed signals back to
analog audio again. The TAA has 16-bit conversion and operates at a 96 kHz
conversion rate, enough for full 16-bit 48 kHz CD-quality audio. The TAA
can directly piggyback onto the T4, too, significantly simplifying the circuit
wiring. Finally, the T4 has enough horsepower to run a real-time FFT
processing at the same time as it is doing the DSP filtering on the audio
channels. Note that there is a specific version of the TAA for the T4. The
older TAA module does not work correctly with the T4.



Starting at the input, we see that provision can be made for two inputs
which are to be routed to the computational channels. At this time, only the
left channel is utilized. However, it would be very easy to add the DSP
functions to the right channel if you wish. We did not need two independent
DSP channels, so adding a second channel remains as an exercise for the
reader. The microphone is connected to the TAA Mic input, which has extra
gain to accommodate the low-level signals from the microphone. The Line
input operates at line levels and is suitable for high-level line signals. This
allows you to input signals from an audio mixer source that outputs line-level
signals. Selection of the source must be done in the setup portion of the
Comp Screen.

Signals from the TAA “headphone” output go to an isolation transformer.
The isolation transformer eliminates the possibility of ground loop noise and
isolates the grounds of the transceiver and Audio Mic-Processor.

The low-level mic inputs accommodate either dynamic, capacitor, or



electret mics. Capacitor and electret mics require a “bias” dc voltage, which
is provided by the TAA. A Mic Gain setting allows the specific level
characteristics of your mic to be accommodated.

The outputs include a line-level output as well as an amplified headphone
output for monitoring. This amplified output is capable driving a small
speaker as well, depending on the application.

The detailed circuit diagram, including pin assignments is contained in
Figure 12.4 and Table 12.1. Note that some Teensy pins, such as USB, are
not available because of system use. One voltage regulator provides power
for the Teensy, display LED, and power amplifier. The 5 V fixed regulator
drops the 12 V to the T4 Vin pin. 3.3 V is provided from the T4 on-board
regulator.



Building the DMP
One advantage of building circuits for the audio frequency range is the

relaxed requirements on layout. The DMP can be constructed using any of
the popular methods. We built our prototype on a modified breakout board.
The Audio Adapter plugs directly onto the Teensy, so control wiring is
minimal. We always use sockets for the microprocessors for ease of insertion
and removal, if necessary. The other components are connected using IDC
connectors and ribbon cable for convenience.

No special wiring precautions are required. We like to use #30 AWG solid
hookup wire because of the close 0.1-inch hole spacing in the proto-board
(same for most perf boards.) The main power connections use #24 AWG or
larger wire to minimize resistive losses.

Figure 12.5 shows the top of the main circuit board, with the Teensy and
Audio Adapter installed. Note the use of multi-pin IDC connectors for
display, front panel connections, and encoders. Figure 12.6 shows a view of
the bottom of the circuit board. Figure 12.7 shows the front and back panel
wiring, with the ribbon cables and female IDC connectors.





Finally, a top view of the assembled unit is shown in Figure 12.8. Shielded
cables are used to carry the low-level audio signals from the front panel to the
Audio Adapter and from the inputs.



For most of the projects in this book we have assumed that the user has
ample 12 V or 13.8 V power available from rig power supplies. This project
doesn’t require much power and could be battery operated in a pinch. If an
adequate supply is not available, a small switch-mode 12 V supply capable of
a couple of amps works just fine, or you can build the Utility Power Supply
described in Chapter 5. Be sure to add adequate filtering of the incoming 12
V supply to minimize noise from getting into the audio path.

We made a 3D printed case with a custom faceplate. Figure 12.9 shows the
unit with the top lid off and Figure 12.10 shows the back panel.



Operating the Mic-Processor
Most of the difficult parts of using the processor are in the setup and, as we

indicated previously, we spent a lot of time trying to make the user
interaction as easy and intuitive as possible. The operational steps are a
simple 1-2-3 process:

1) After hooking up the DMP to your rig and mic, you must set the
parameters for the functions you want to use. To enter the “Setup” mode for
any function, touch the on-screen function button to bring up the setup



routine for that function. Using the two encoders, set the parameters for that
function. (A detailed description of each setup is given below.) If displayed,
touch the “Set” button to store the parameters in (emulated) EEPROM.

2) Turn each function on or off using the on-screen buttons at the top of the
display. The status of the function is displayed by the color of the button for
that function.

3) Adjust the output level using the volume control. You are now ready to
go!

Function Detail
There are only three functions available for the DMP

1) Equalizer (EQ)
The EQ utilizes eight bands: 150, 240, 370, 590, 900, 1300, 2000, and

3300 Hz. Figure 12.11 shows the individual band responses.

In the EQ Setting screen, the bands are graphically depicted on the screen,
with two parameter selections, as shown in Figure 12.12. The Band/Adjust
encoder selects the band and the Level encoder sets the level for that band.
Each band has a range of +12 dB to –12 dB. Note that there is interaction
between adjacent bands, since the individual bands have finite skirt slopes
and the filters overlap. In practice this does not affect the performance,
because the amount of adjustment to achieve “natural” sound is typically not



large.

The best way to set the EQ profile is to monitor your speech while
adjusting the bands and levels by altering the band levels to achieve the most
“natural” sound. The EQ may be used in conjunction with any of the other
functions. We suggest recording your speech and listening to it later. This
eliminates the aural feedback present when you speak. Just hook an audio
recorder to the headphone output as you speak.

A typical response plot of the EQ is shown in Figure 12.13.



2) Automatic Level Control (ALC) — Compressor
Speech audio levels vary considerably during the typical QSO. Perception

of the strength of your SSB signal depends on having the modulating level
more nearly uniform than is usual with typical speech. The ALC function
here augments the perceived levels by boosting low volume levels and
limiting the maximum volume levels. Both the upper Threshold level, at
which the auto level control limits the top volume and the lower Threshold
level, at which the gain is increased, are adjustable using the first encoder.
Simply touch the button for the Threshold parameter to set and turn the
encoder. When the level is where you want it, press the “Set” button to save
the values in EEPROM.

Mic Gain may also be set on this screen, to account for differences in
microphone sensitivity. Figure 12.14 shows the Comp setting screen.



3) FFT
A Fast Fourier Transform (FFT) display is available during operation,

showing the frequency spectrum from 100 Hz to 5 kHz. 128 frequency bands
clearly show the frequency content of the audio. The display is rapidly
refreshed for a real-time depiction of the spectrum.

To activate the FFT, press the FFT button. FFT is available during
operation, but not while changing settings. All other functions may be used
with FFT, so the effect of EQ and Compression can be observed. Figure
12.15 shows a typical FFT spectrum. The vertical axis is a log scale in dB.



Software Code Description
Much of the DMP code is like that of the Post Processor, and a general

introduction to digital signal processing (DSP) was presented in Chapter 11.
Again, the Teensy Audio library is used to implement DSP functions. The
library functions consist of a number of modules that are connected to form a
signal path. Each module also has a set of individual functions with
parameters. The software design starts by using an online graphical design
tool to lay out the data flow for the audio DSP and then copying the
automatically generated code to the Arduino IDE. The graphical design tool
is available from www.pjrc.com/teensy/gui/. (The design software is very
slick, but takes some time to master. It’s worth the effort if you want to
extend our DMP.)

Function parameters are set with the code to tailor the DSP responses to
suit. The flow diagram is shown in Figure 12.16. The DSP Mic-Processor
performs a number of functions to modify and improve the audio signals

http://www.pjrc.com/teensy/gui/


going to your transmitter. Some of these functions are similar to circuit
functions in the analog world, some are not. In any case, all of our processing
is done digitally by performing mathematical operations on the audio signals
to alter frequency response, change levels and reduce noise. The speed of the
T4 is sufficient to do all of this seamlessly (which is why we selected the
more expensive T4).

There are analog circuit equivalents to some of the frequency domain
filters we use. For instance, the low-pass filters we used in the Post-Processor
are equivalent to a cascade of RC (resistor-capacitor) filters with gain. Each
single analog RC stage yields a frequency roll-off of –3 dB/octave. Our eight
cascaded digital filters have a total roll-off of 48 dB/octave or 160 dB/decade,
which is the equivalent of 16 stages of RC filters! Imagine wiring up such an
array, with appropriate gain stages. The band-pass filters used in the DMP are
ever more complex to implement in hardware. We do it all in software.

The Compressor or Automatic Level Control is the equivalent of a variable
gain stage, controlled by the peak signal level — again a complex circuit. We
do all of that with a few lines of code and the very nice audio library that
works with the Teensy’s Audio Adapter.

The filters for the EQ we use are called biquad or biquadradic cascaded
filters, which are a variety of recursive linear filters based on a mathematical



formula that has feedback incorporated. The interested the reader can find out
more at peabody.sapp.org/class/350.838/lab/biquad/. In essence, the filters
we use have a grouping of four filters in a module that can be cascaded with
additional modules to obtain better performance. The biquad filters can be
configured as low-pass (LP), high-pass (HP), notch, or band-pass (BP) filters.
We use the band-pass configuration in our DMP.

In addition to digital filters, we also use mathematical operations to
calculate Fast Fourier Transforms (FFT) to give us real-time spectrum plots
of our audio signals. Once again, the T4 is fast enough to calculate all of the
filter function operations and do the FFT at the same time.

Signal Flow
At the input in Figure 12.16, an audio capture module is the starting place

for the audio signal. This connects the audio input to the DSP functions. Each
module is interconnected using a (graphical) digital “connector” wire.

Starting at the left in Figure 12.16, we see the CompMix module, which
provides the variable gain necessary for the Compressor. The gain is set in
the Compressor() routine, which samples the input signal peak values and
adjusts the gain according to the sampled level. The response is fast enough
to react to changing levels but averages the control signal sufficiently to
ensure natural sounding speech. The speech levels are sampled using the
“Peak” function.

Next in line we have the eight-band equalizer. Signals are sent to eight
different biquad band-pass filters (biquad1-biquad8) each with a different
center frequency. Human hearing is approximately logarithmic with
frequency, so the center frequency spacing is set to be approximately 1.5× the
previous band frequency, which gives an equal spacing on a log scale. The
eight bands cover the range of 150 Hz to 3300 Hz in eight steps. The output
of each filter is sent to the inputs of two mixers, in which the individual band
gains are set. The eight outputs are then combined into one composite signal
by another mixer. The spectrum is shaped by setting the individual band
gains from +12 dB to –12 dB. Because the filter skirts drop off at a finite
value, there is interaction among the filters, limiting the sharpness of peaks
and dips. The purpose of the EQ section is to gently shape the spectrum to
eliminate humps or dips in the ultimate frequency spectrum, compensating

http://peabody.sapp.org/class/350.838/lab/biquad/


for microphone variations. Note that these filters create phase changes, so the
mixer gains alternate + and – to account for the appropriate phase reversals.

In the software, there are other code routines that perform various
functions. For instance, there is an ongoing routine that reads the on-screen
touch-activated buttons to determine when one was pressed. Each Setting
function has three major routines:

1) Draw the graphical representation on the screen;
2) Read the encoders and set the appropriate biquad filter parameters

and/or the mixer gains; and then
3) Turn the functions on or off using the front panel push buttons.
In the code there are also the usual menu functions, encoder interrupt

functions, screen management, and so on, all of which has been adequately
described elsewhere in the previous chapters. The code is broken up into nine
different files for convenience of both coding and debugging. Adequate
comments throughout should help anyone wishing to make extensions or
improvements.

Possible extensions for the adventurous include:
• Independent functions for Channel A and Channel B. This is primarily a

UI coding exercise, adding setting and selection routines for each
channel. This would allow for more than one mic to be attached and
compensated separately, or a high-level mixer input could be added to
the second channel.

• A digital recorder could be incorporated to allow the operator to review
speech quality off-line. The Teensy Audio Library has the necessary
components to implement such a recorder.

• Adding real-time spectrum monitoring during setup in order to observe
the spectral response variations while making changes.

Conclusion
In summary, the DSP Mic-Processor presented here can bring an older

transceiver up to modern signal processing standards and could even be a
valuable adjunct to lower-end current rigs that are perfectly adequate in all
other ways. If you do enhance the DMP, we hope you’ll post your work on
the SoftwareControlledHamRadio website!


